Lect7

N-element Array

Dr. Gehan Sami

N-element Array : Uniform Amplitude and spacing

Uniform Array:
-Identical elements with identical amplitudes
-Progressive phase shift

Why antenna Array

1-Usually gain of single element is low, thus array is used for increasing gain for long distance communication

If $\lambda / 2$ dipole is reference
i.e. its Gain considered to be $=0 \mathrm{~dB}$
("note that $\lambda / 2$ dipole has $D=2 d B$ "
then
2 element array increase gain by 3 dB (double gain 2 time)

4 element array increase gain by 6 dB (double gain 4 time)

8 element array could increase gain by 9 dB (double gain 8time)

2-Beam steering

by changing progressive phase

3-Nulling interference directions

- N-ELEMENT LINEAR ARRAY: Uniform Amplitude and Spacing uniform array has: Identical elements-Identical magnitude-Progressive phase Also uniform spacing
- Etot $=E 1+E 2+E 3+\ldots .+E N$
- Etot=A $\left[\mathrm{I}_{1} \mathrm{e}^{-\mathrm{jkr1}}+\mathrm{I}_{2} \mathrm{e}^{-\mathrm{jkr} 2}+\mathrm{I}_{3} \mathrm{e}^{-\mathrm{jkr} 3}+\ldots+\mathrm{I}_{\mathrm{n}} \mathrm{e}^{-\mathrm{jkrN}}\right]$
- Where $A=(j \eta k L / 4 \pi r) \sin \theta \quad$ for infinitesimal dipole
- $\quad I_{2}=I_{1} e^{j \beta}$
- $\quad \mathrm{r}_{2}=\mathrm{r}_{1}-\mathrm{d} \cos \theta$
- Etot $=A I_{1} e^{-j k r 1}\left[1+\mathrm{e}^{\mathrm{j} \beta} \mathrm{e}^{\mathrm{jkdcos} \theta}+\mathrm{e}^{\mathrm{j} 2 \beta} \mathrm{e}^{\mathrm{j} 2 k d \cos \theta}+\mathrm{e}^{\mathrm{j} 3 \beta} \mathrm{e}^{\mathrm{j} 3 k d \cos \theta+}+\ldots\right]$
$\mathrm{AF}=1+\boldsymbol{e}^{j(k d \cos \theta+\beta)}+\boldsymbol{e}^{j 2(k d \cos \theta+\beta)}+\boldsymbol{e}^{j 3(k d \cos \theta+\beta)}+\ldots \ldots+e^{j(N-1)(k d \cos \theta+\beta)}$
$\mathrm{AF}=1+\boldsymbol{e}^{j \psi}+\boldsymbol{e}^{j 2 \psi}+\boldsymbol{e}^{j 3 \psi}+\ldots \ldots+\boldsymbol{e}^{j(N-1) \psi}$
Where, $\psi=k d \cos \theta+\beta$
- $\mathrm{AF}=1+\boldsymbol{e}^{j \psi}+\boldsymbol{e}^{j 2 \psi}+\boldsymbol{e}^{j 3 \psi}+\ldots \ldots+\boldsymbol{e}^{j(N-1) \psi}$
- AF. $\boldsymbol{e}^{j \psi}=\boldsymbol{e}^{j \psi}+\boldsymbol{e}^{j 2 \psi}+\boldsymbol{e}^{j 3 \psi}+\ldots . .+\boldsymbol{e}^{j(N-1) \psi}+\boldsymbol{e}^{j N \psi}$
- Subtract (1) from (2) $\quad \mathbf{A F}\left(e^{j \psi}-1\right)=\left(-1+e^{j N \psi}\right)$

$$
\begin{aligned}
\mathrm{AF} & =\left[\frac{e^{j N \psi}-1}{e^{j \psi}-1}\right]=e^{j[(N-1) / 2] \psi}\left[\frac{e^{j(N / 2) \psi}-e^{-j(N / 2) \psi}}{e^{j(1 / 2) \psi}-e^{-j(1 / 2) \psi}}\right] \\
& =e^{j[(N-1) / 2] \psi}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right]
\end{aligned}
$$

Max occurred at $A F=\frac{0}{O} \quad$ which occurred at $\psi / 2= \pm \mathbf{m} \pi \quad$ (for $m=0,1,2$, .) To get Max value differentiate num and denum w.r.t. ψ (and substitute $\psi=0$) $\mathrm{AF}_{\text {MAX }}=\mathbf{N}$ hence

$$
(\mathrm{AF})_{n}=\frac{1}{N}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right]
$$

Observations:
(1) Main lobe is in the direction so that $\psi=k \boldsymbol{d} \cos \theta+\beta=0$
(2) The main lobe narrows as N increases.

- Max occurred at $\boldsymbol{\psi}=0=\mathrm{k} . \mathrm{d} \cdot \cos \theta+\beta \quad$ (for AF pattern)

If the first maximum is desired toward $\theta_{0}=180^{\circ}$, then

$$
\psi=k d \cos \theta+\left.\beta\right|_{\theta-180^{\circ}}=-k d+\beta=0 \Rightarrow \beta=k d
$$

It is required to study $(A F)_{n}$

$$
(\mathrm{AF})_{n}=\frac{1}{N}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right]
$$

Nulls

$$
\mathrm{N} \frac{\psi}{2}= \pm \mathrm{m} \pi, \mathrm{~m}=1,2,3, . . \neq 0, \mathrm{~N}, 2 \mathrm{~N}, \ldots .
$$

Maximum

$$
\begin{gathered}
\frac{\psi}{2}= \pm \mathrm{m} \pi, \mathrm{~m}=0,1,2, \ldots(0 \text { for main lobe }) \\
\text { Grating lobe condition (at } \mathbf{m}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots)
\end{gathered}
$$3-dB point

$$
\mathrm{N} \frac{\psi}{2}= \pm 1.39
$$

Secondary Maximum for minor lobes

$$
\begin{aligned}
\mathrm{N} \frac{\psi}{2}= & \pm \frac{2 \mathrm{~s}+1}{2} \pi \quad, \quad \mathrm{~S}=1,2,3, \ldots . . \\
& \text { Maximum of first minor lobe occurred at } N \psi / 2= \pm 3 \pi / 2
\end{aligned}
$$

- NULLS $\quad\left(\mathrm{AF}_{n}=\frac{1}{N}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right]\right.$
- Nulls occurred at $\sin (N \psi / 2)=0$
- Kdcos $\theta+\beta= \pm 2 n \pi / N$ where $n=1,2,3$ (again $n \neq 0$ or N or $2 N$.......this make $(\mathrm{AF})_{\mathrm{n}}=0 / 0$ which is max condition)

$$
\theta_{n}=\cos ^{-1}\left[\frac{\lambda}{2 \pi d}\left(-\beta \pm \frac{2 n}{N} \pi\right)\right]
$$

- Broadside Array (sources in phase $\boldsymbol{\beta = 0}$) End fire Array ($\boldsymbol{\beta}=-\mathrm{kd}$)

$$
\begin{gathered}
\theta_{n}=\cos ^{-1}\left(\pm \frac{n}{N} \frac{\lambda}{d}\right) \\
n=1,2,3, \ldots \\
n \neq N, 2 N, 3 N, \ldots
\end{gathered}
$$

$$
\begin{gathered}
\begin{array}{c}
\theta_{n}=\cos ^{-1}\left(1-\frac{n \lambda}{N d}\right) \\
n=1,2,3, \ldots \\
n \neq N, 2 N, 3 N, \ldots \\
\hline 1-\text { because } \cos ^{-1}(\text { less than } 1)
\end{array}
\end{gathered}
$$

$$
\text { - MAXIMUM }\left(\mathrm{AF}_{n}=\frac{1}{N}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right] \simeq \simeq\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\frac{N}{2} \psi}\right]\right.
$$

- Maximum occurred at $\psi / 2= \pm m \pi$ (for $(\overline{\mathrm{AF}})_{\mathrm{n}}=\underline{0 / 0)}$
- $\underline{K d \cos \theta+} \beta= \pm 2 m \pi$ where $m=0,1,2,3$

$$
\theta_{m}=\cos ^{-1}\left[\frac{\lambda}{2 \pi d}(-\beta \pm 2 m \pi)\right]
$$

- For $\sin (\mathrm{Nx}) / \mathrm{Nsin}(\mathrm{x})$ maximum occurred at $\mathrm{x}=0$ or $\psi / 2=0$ i.e $\mathrm{m}=0$

Figure II. 1 Curves of $|\sin (N x) / N \sin (x)|$ function.

Grating lobe condition

- Grating Lobe is lobe with Maxima(as of major) in other direction (un required direction).
Max condition array factor was(0/0 condition) at $\psi / 2=0$ i.e $K d \cos \theta_{\mathrm{g}}+\beta= \pm 2 \mathrm{~m} \pi$,
- for broad side $\beta=0$
$\theta_{\mathrm{m}}=\cos ^{-1}(\mathrm{~m} \lambda / \mathrm{d})$ there is no grating lobe as long as \mathbf{d} $\max ^{<1}<\lambda$
$\cos ^{-1}(\mathrm{~m} \lambda / \mathrm{d})$ exist only at $\mathrm{m}=0$ when $\mathrm{d}_{\text {max }}<\lambda$ if d realize $\mathrm{m} \lambda / \mathrm{d}<1$ or $\mathrm{d}>\mathrm{m} \lambda$ there is grating lobe.
- For end fire, $\beta=-\mathrm{kd}$ for $\theta_{\mathrm{m}}=\cos ^{-1}(1-\mathrm{n} \lambda / \mathrm{d})$ there is no grating lobe as long as $\boldsymbol{d}_{\text {max }}<\lambda / 2$
- $\cos ^{-1}(1-n \lambda / d)$ exist only at $m=0$ when $d_{\max }<\lambda / 2$

- Use Approximation $\sin (\mathrm{x}) / \mathrm{x}$ because it does not depend on N

Using try and error 3 dB occurred at $\sin (\mathrm{x}) / \mathrm{x}=.707$ i.e. $\mathrm{x}=1.39$
because it is field pattern $(\sin (1.93 * 180 / \pi) / 1.39=.7076$

\[\)| $\frac{N}{2} \psi=\left.\frac{N}{2}(k d \cos \theta+\beta)\right\|_{\theta=\theta_{h}}= \pm 1.391$ |
| ---: |
| $\Rightarrow \theta_{h}=\cos ^{-1}\left[\frac{\lambda}{2 \pi d}\left(-\beta \pm \frac{2.782}{N}\right)\right]$ |

\]

- Broadside Array (sources in phase $\boldsymbol{\beta}=0$)

End fire Array ($\beta=-\mathrm{kd}$)

$$
\theta_{h} \simeq \cos ^{-1}\left(1-\frac{1.391 \lambda}{\pi d N}\right)
$$

- Secondary Maximafor AF

Secondary maxima occurred at numerator is maxima

$$
\begin{aligned}
\sin \left(\frac{N}{2} \psi\right)=\left.\sin \left[\frac{N}{2}(k d \cos \theta+\beta)\right]\right|_{\theta=\theta_{s}} \simeq \pm\left. 1 \Rightarrow \frac{N}{2}(k d \cos \theta+\beta)\right|_{\theta=\theta_{s}} \\
\simeq \pm\left(\frac{2 s+1}{2}\right) \pi \Rightarrow \theta_{s} \simeq \cos ^{-1}\left\{\frac{\lambda}{2 \pi d}\left[-\beta \pm\left(\frac{2 s+1}{N}\right) \pi\right]\right\} \\
s=1,2,3, \ldots
\end{aligned}
$$

- Maximum of first minor lobe occurred at $\mathrm{N} \psi / 2=3 \pi / 2$ (i.e. $\mathrm{s}=1$)

$$
(A F)_{n}=\frac{\sin \left(\frac{N \psi}{2}\right)}{\frac{N \psi}{2}}=\frac{1}{3 \pi / 2}=.212=-13 d B
$$

- Broadside Arrav (sources in phase $\beta=0$)

MINOR LOBE MAXIMA

$$
\theta_{s} \simeq \cos ^{-1}\left[\pm \frac{\lambda}{2 d}\left(\frac{2 s+1}{N}\right)\right]
$$

$$
s=1,2,3, .
$$

End fire Array ($\beta=-\mathrm{kd}$)

$$
\theta_{s} \simeq \cos ^{-1}\left[1-\frac{(2 s+1) \lambda}{2 N d}\right]
$$

$$
s=1,2,3, .
$$

TABLE 6.2 Beamwidths for Uniform Amplitude Broadside Arrays

FIRST-NULL BEAMWIDTH(FNBW)	$\theta_{n}=2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{\lambda}{N d}\right)\right]$
HALF-POWER BEAMWIDTH (HPBW)	$\theta_{h} \simeq 2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{1.391 \lambda}{\pi N d}\right)\right]$
	$\pi d / \lambda \ll 1$
FIRST SIDE LOBE BEAMWIDTH (FSLBW)	$\theta_{s} \simeq 2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{3 \lambda}{2 d N}\right)\right]$
	$\pi d / \lambda \ll 1$

TABLE 6.4 Beamwidths for Uniform Amplitude Ordinary End-Fire Arrays FIRST-NULL BEAMWIDTH (FNBW)

HALF-POWER BEAMWIDTH (HPBW)

FIRST SIDE LOBE BEAMWIDTH (FSLBW)

$$
\begin{aligned}
\Theta_{n} & =2 \cos ^{-1}\left(1-\frac{\lambda}{N d}\right) \\
\Theta_{h} \simeq & 2 \cos ^{-1}\left(1-\frac{1.391 \lambda}{\pi d N}\right) \\
& \pi d / \lambda \ll 1 \\
\Theta_{s} \simeq & 2 \cos ^{-1}\left(1-\frac{3 \lambda}{2 N d}\right) \\
\quad \pi d / \lambda & \ll 1
\end{aligned}
$$

adjusted so that
$\psi=k d \cos \theta+\left.\beta\right|_{\theta=\theta_{0}}=k d \cos \theta_{0}+\beta=0 \Rightarrow \beta=-k d \cos \theta_{0}$

For Broadside array $\beta=0, d=\lambda$

$\theta_{\mathrm{m}}=\cos ^{-1}(\pm \mathrm{m} \lambda / \mathrm{d})=\cos ^{-1}(\pm \mathrm{m})$
exist at

$$
\begin{array}{ll}
\mathrm{m}=0(\text { main lobe) } & \theta_{\mathrm{m}}=\pi / 2 \\
\mathrm{~m}=1 & \theta_{\mathrm{m}}=0, \pi
\end{array}
$$

Try and error for θ h for grating lobe Using

$$
\left(\mathrm{AF}_{n}=\frac{1}{N}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right]\right.
$$

$\mathrm{HPBW}=5.07^{\circ}$ for main lobe
HPBW $=34.4^{\circ}$ for grating lobe
(b) Broadside/end-fire $(\beta=0, d=\lambda)$

Figure 6.6 Three-dimensional amplitude patterns for broadside, and broadside/end-fire arrays

Broadside Array

For $d=\lambda$ maxima at $0,90,180$
$\mathrm{d}=\lambda / 4$ maxima at 90

$$
\begin{aligned}
& d=\lambda / 4 \\
& ----d=\lambda
\end{aligned}
$$

Figure 6.7 Array factor pattems of a 10 -element uniform amplitude broadside array ($N=10, \beta=0$).

Directivity:

$$
\begin{aligned}
& (\mathrm{AF})_{n}=\frac{1}{N}\left[\frac{\sin \left(\frac{N}{2} \psi\right)}{\sin \left(\frac{1}{2} \psi\right)}\right] \\
& D=\frac{4 \pi}{\int_{0}^{2 \pi} \int_{0}^{\pi}(A F)_{n}^{2} \sin \theta d \theta d \varnothing}
\end{aligned}
$$

Note that Krause approximation is not valid here as radiation may not have single lobe with two perpendicular planes That contain max radiation. Figure below illustrate this concept:

Example : Problem 6.17
Design a 19 element uniform linear scanning array with a spacing of $\lambda / 4$ between elements
(a) What is the progressive phase excitation between elements so that maximum of the array factor is 30° From the line where the elements are placed
(b) What is the half power beam width of the array factor of part a
(c) What is the value (in dB) of the maximum of the first minor lobe

Solution:

Include computing directivity:-
$6-17$

$$
d=x / 4 \quad N=19 \quad \theta_{\text {max }}=30^{\circ} \quad \beta=? ?
$$

(a) max at $\frac{\psi}{2}=0$
or $k d \cos \theta_{\text {max }}+\beta=0 \quad k d=\frac{2 \pi}{\lambda} \times \frac{\lambda}{4}=\frac{\pi}{2}$

$$
\beta=-\frac{\pi}{2} \cos 30=-\frac{\sqrt{3} \pi}{4}=-1.36 \mathrm{rad}
$$

(b) θ_{h} at $\frac{N H}{2}= \pm 1.391$

$$
\begin{array}{r}
\text { Md } \cos \theta_{h}-1.36= \pm \frac{2}{19} \times 1.391 \\
\begin{aligned}
\theta_{h}=\cos ^{-1} \frac{2}{\pi}\left[\pm \frac{2}{19} \times 1.391+1.36\right]
\end{aligned} \quad\left[\begin{array}{l}
\\
\theta_{h_{1}}=0.2873 \mathrm{rad} \\
\\
\therefore \theta_{h_{2}}=0.68788
\end{array}\right. \\
\therefore H P B H=\left|\theta_{h_{2}}-\theta_{h_{1}}\right|=0.4 \mathrm{rad}=23^{\circ}
\end{array}
$$

if we want to compute D
if we want to compute D

$$
\begin{aligned}
& D=\frac{2}{\int_{0}^{\pi}\left[\frac{\sin \left(\frac{19}{2}\left[\frac{\pi}{2} \cos \theta-1.36\right]\right)}{19 \sin \left(0.5\left(\frac{\pi}{2} \cos \theta-1.36\right)\right)}\right]^{2} \sin \theta d \theta}=\frac{2}{0.195} \\
& D=10.25=10.1 \mathrm{~dB} .
\end{aligned}
$$

(c) First minor lobe occure at $\frac{N H}{2}=\frac{3 \pi}{2}$

$$
\therefore(A F)_{n}=\frac{\sin \frac{3 \pi}{2}}{19 \sin \left(\frac{3 \pi}{2 \times 19}\right)}=-0.214 \underset{20 \log }{\frac{11}{2}} \therefore \text { in } d B(A)_{n}=-13.37
$$

Axis \square
$z: \quad \psi=k d \cos \theta+\beta$
$x: \psi=k d \sin \theta \cos \phi+\beta$
$y: \psi=k d \sin \theta \sin \phi+\beta$

example

Draw Radiation pattern of $A F$

array on y axis, $N=6, \theta_{\max }=30^{\circ},-\pi<\theta<\pi, d x=d y=\lambda / 2$
$\beta_{x}=\beta_{y}=-k d \sin \theta_{\max }=-0.5 \pi$

Soln:

Get nulls:

$$
\begin{aligned}
& A F=\frac{\sin (3 \pi(\sin \theta-0.5))}{6 \sin (0.5 \pi(\sin \theta-0.5))} \\
& \theta_{\text {null }}=\left(\pm \frac{m}{3}+.5\right) \quad m=1 \rightarrow \theta_{\text {null }}=56.4^{\circ}, 9.6^{\circ} \\
& m=2 \rightarrow \theta_{\text {null }}=-9.6^{\circ} \\
& \qquad m=3 \rightarrow \theta_{\text {null }}=-30^{\circ} \\
& \quad m=4 \rightarrow \theta_{\text {null }}=-56.4^{\circ}
\end{aligned}
$$

Planar arrays can provide more symmetrical patterns with lower side lobes.

Array Factor AF=AFx.AFy

M elements along x-axis :The spacing and progressive phase shift between the elements along the x-axis are represented, respectively, by $d x$ and $\beta \mathrm{x} . \quad \mathrm{AF}_{x}=\sum_{m=1}^{M} I_{m 1} e^{j(m-1)\left(d d_{x} \sin \theta \cos \phi+\beta_{x}\right)}$ and N elements along y axis a distance $d y$ apart and with a progressive phase $\beta \mathrm{y}$.

$$
\mathrm{AF}_{y}=\sum_{n=1}^{N} I_{1 n} e^{j(n-1)\left(k d_{y} \sin \theta \sin \phi+\beta_{y}\right)}
$$

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{AF}_{n}(\theta, \phi)=\left\{\frac{1}{M} \frac{\sin \left(\frac{M}{2} \psi_{x}\right)}{\sin \left(\frac{\psi_{x}}{2}\right)}\right\}\left\{\frac{1}{N} \frac{\sin \left(\frac{N}{2} \psi_{y}\right)}{\sin \left(\frac{\psi_{y}}{2}\right)}\right\} \\
& \text { where } \\
& \psi_{x}=k d_{x} \sin \theta \cos \phi+\beta_{x} \\
& \psi_{y}=k d_{y} \sin \theta \sin \phi+\beta_{y}
\end{aligned}
\end{aligned}
$$

Figure 6.30 Linear and planar array geometries.

To avoid grating lobes in the x-z and y-z planes, the spacing between the elements in the x - and y-directions, respectively, must be less than $\lambda 2$ ($d x<\lambda / 2$ and $d y<\lambda / 2)$.

For a rectangular array, the major lobe and grating are located at
$k d x \sin \theta \cos \phi+\beta x= \pm 2 m \pi \quad m=0,1,2 \ldots \ldots$
$k d y \sin \theta \sin \phi+\beta y= \pm 2 n \pi \quad n=0,1,2, \ldots$
The phases βx and βy are independent of each other, and they can be adjusted so that the main beam of $A F x$ is not the same as that of $A F y$. However, in most practical applications it is required that the conical main beams of $A F x$ and $A F y$ intersect and their maxima be directed toward the same direction.

For one main beam that is directed along $\theta=\theta_{0}$ and $\phi=\phi_{0}$, the

$$
\begin{aligned}
& \beta_{x}=-k d_{x} \sin \theta_{0} \cos \phi_{0} \\
& \beta_{y}=-k d_{y} \sin \theta_{0} \sin \phi_{0}
\end{aligned}
$$

Solving simultaneously

$$
\begin{aligned}
& \tan \phi_{0}=\frac{\beta_{y} d_{x}}{\beta_{x} d_{y}} \\
& \sin ^{2} \theta_{0}=\left(\frac{\beta_{x}}{k d_{x}}\right)^{2}+\left(\frac{\beta_{y}}{k d_{y}}\right)^{2}
\end{aligned}
$$

PLANAR ARRAY Directivity

The directivity of the array factor $\operatorname{AF}(\theta, \phi)$ whose major beam is pointing in the $\theta=\theta 0$ and $\phi=\phi 0$ direction, can be obtained by:

$$
D_{0}=\frac{4 \pi}{\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{[\mathrm{AF}(\theta, \phi)][\mathrm{AF}(\theta, \phi)]^{*} \sin \theta}{\left.\left[\mathrm{AF}\left(\theta_{0}, \phi_{0}\right)\right]\left[\mathrm{AF}\left(\theta_{0}, \phi_{0}\right)\right]^{*}\right|_{\max }} d \theta d \phi}
$$

For large planar arrays, which are nearly broadside, the directivity reduces to

$$
D_{0}=\pi \cos \theta_{0} D_{x} D_{y}
$$

$$
\begin{aligned}
& \mathrm{AF}_{n}(\theta, \phi)=\left\{\frac{1}{M} \frac{\sin \left(\frac{M}{2} \psi_{x}\right)}{\sin \left(\frac{\psi_{x}}{2}\right)}\right\}\left\{\frac{1}{N} \frac{\sin \left(\frac{N}{2} \psi_{y}\right)}{\sin \left(\frac{\psi_{y}}{2}\right)}\right\} \\
& \text { where } \\
& \psi_{x}=k d_{x} \sin \theta \cos \phi+\beta_{x} \\
& \psi_{y}=k d_{y} \sin \theta \sin \phi+\beta_{y}
\end{aligned}
$$

$$
D x=2 M(d x / \lambda) \quad \text { and } \quad D y=2 N(d y / \lambda)
$$

where $D x$ and $D y$ are the directivities of broadside linear arrays each, respectively, of number of elements M and N.
6.50. Design a 10×8 (10 in the x direction and 8 in the y) element uniform planar array so that the main maximum is oriented along $\theta_{0}=10^{\circ}, \phi_{0}=90^{\circ}$. For a spacing of $d_{x}=d_{y}=\lambda / 8$ between the elements, find the
(a) progressive phase shift between the elements in the x and y directions
(b) directivity of the array

6-50. $d_{x}=d_{y}=\lambda / 8, \quad M=10, N=8, \theta_{0}=10^{\circ}, \varnothing_{0}=90^{\circ}$
a. $\beta_{x}=-k d_{x} \sin \theta_{0} \cos \phi_{0}=-\frac{2 \pi}{\lambda} \frac{\lambda}{8} \sin \left(10^{\circ}\right) \cos \left(90^{\circ}\right)=0$

$$
\beta_{y}=-k d y \sin \theta_{0} \sin \phi_{0}=-\frac{2 \pi}{\lambda} \frac{\lambda}{8} \sin \left(10^{\circ}\right) \sin \left(90^{\circ}\right)=-0.1364 \mathrm{rad}=-7.81^{\circ}
$$

b.

$$
\begin{aligned}
& D_{0}=\pi \cos \theta_{0} D_{x} D_{y} \\
& D_{x}=2 N\left(\frac{d x}{\lambda}\right)=2(10)\left(\frac{1}{8}\right)=2.5=3.98 \mathrm{~dB} \\
& D_{y}=2 N\left(\frac{d y}{\lambda}\right)=2(8)\left(\frac{1}{8}\right)=2.0=3.01 \mathrm{~dB} \\
& D=\pi \cos \left(10^{\circ}\right)(2.5)(2)=15.47=11.89 \mathrm{~dB}
\end{aligned}
$$

